Czynniki wpływające na zniekształcenie sygnału w światłowodzie - TELEKOMUNIKACJA - PARAMETRY - ŚWIATŁOWÓD - DYSPERSJA - TRANSMISJA - JEDNOMODOWY - WIELOMODOWY - CHROMATYCZNA - ZAŁAMANIE - TŁUMIENIE - SYSTEMY TELEKOMUNIKACYJNEKSZTAŁT SYGNAŁU - DŁUGOŚĆ FALI
Mouser Electronics Poland   Przedstawicielstwo Handlowe Paweł Rutkowski   Amper.pl sp. z o.o.  

Energetyka, Automatyka przemysłowa, Elektrotechnika

Dodaj firmę Ogłoszenia Poleć znajomemu Dodaj artykuł Newsletter RSS
strona główna BAZA WIEDZY Czynniki wpływające na zniekształcenie sygnału w światłowodzie
drukuj stronę
poleć znajomemu

Czynniki wpływające na zniekształcenie sygnału w światłowodzie

Gdyby włókno światłowodowe byłoby idealnym medium transmisyjnym, to sygnały wejściowy i wyjściowy byłyby identyczne. Niestety światłowód powoduje zniekształcenie przesyłanej informacji,

flecz w nieporównywalnie mniejszym stopniu niż w przypadku kabli miedzianych. Przesyłany impuls optyczny podlega zjawiskom tłumienia, dyspersji i opóźnienia. Opóźnienie przesyłanego impulsu nie stanowi dużego problemu o ile jest ono stałe i mieści się w wyznaczonych granicach. Jednak podstawowymi ograniczeniami jakości transmitowanego sygnału w torze światłowodowym są tłumienie i dyspersja. To pierwsze zjawisko powoduje zmniejszenie mocy sygnału, przez co wprowadza ograniczenie długości światłowodu oraz odległości miedzy nadajnikiem i odbiornikiem. Natomiast drugie powoduje zmianę kształtu sygnału poprzez jego „rozmycie”, które rośnie wraz ze wzrostem odległości transmisji. Takie rozszerzenie się impulsu może powodować błędy w odbiorze sygnału.

1. Tłumienie

Fakt zastosowania kabli światłowodowych do transmisji sygnałów na duże odległości powoduje konieczność minimalizacji tłumienia. W światłowodzie szklanym można wyróżnić dwa zasadnicze mechanizmy powodujące tłumienie sygnału: absorpcję i rozpraszanie. Oba te zjawiska zależą od długości fali. Absorpcja jest bardziej odczuwalna podczas transmisji fal o długościach λ > 1,6 µm, natomiast rozpraszanie jest elementem dominującym w przypadku przedziału 0,6 ÷ 1,6 µm.

Podczas transmisji wykorzystującej fale o długościach mieszczących się w zakresie widzialnym, głównym źródłem tłumienia w światłowodach jest rozpraszanie Rayleigha. Jest ono związane z faktem występowania fluktuacji współczynnika załamania światła i polega na tym, iż na niewielkich niejednorodnościach materiału foton jest pochłaniany i od razu wypromieniowany w losowym kierunku bez utraty swej energii.

Efekt rozpraszania Rayleigha zmienia się z długością fali proporcjonalnie do 1/λ4 [3].Tłumienie w światłowodzie wykonanym z SiO2 spowodowane procesem rozpraszania ma wartość w przybliżeniu 3 dB/km dla fal o długości λ=0,7 µm i silnie maleje przy wzroście długości fali. Można również zauważyć, iż wprowadzenie domieszek do szkła w celu otrzymania wyższego współczynnika załamania rdzenia powoduje zwiększenie efektu rozpraszania Rayleigha. Na rysunku 21 pokazano wpływ zmian domieszkowania na wartość tłumienia wywołanego przez rozpraszanie Rayleigha.

Przy większych długościach fali wpływ rozpraszania Rayleigha staje się pomijalnie mały, natomiast głównym źródłem tłumienia staje się absorpcja. Sygnał optyczny przechodząc przez światłowód wywiera wpływ na jego strukturę, powodując drgania cząsteczek, z których jest zbudowany. Ruch ten z kolei jest źródłem ciepła. W takim przypadku część energii światła zostaje stracona w wyniku jej zamiany w energię cieplną. Długość fali odpowiadająca częstotliwości rezonansowej powstałych drgań to ok. 9 μm. Przy tej wartości występuje maksimum tłumienia co może powodować, iż warstwy szkła nawet o niewielkiej grubości mogą być całkowicie nieprzejrzyste dla tej długości fali. W przypadku mniejszych wartości długości fali λ wpływ samoistnej absorpcji jest dużo mniejszy, aż staje się ona pomijanie mała dla λ < 1,6 μm.

W powyższych rozważaniach założono, iż światłowód jest idealny i nie posiada żadnych zanieczyszczeń i defektów. Jednak w rzeczywistych włóknach w czasie procesu technologicznego trudno jest usunąć wodę zawartą w szkle, a ściśle rzecz biorąc jony OH. Druga harmoniczna drgań jonów OH odpowiada długości fali λ = 1,39 μm i dlatego wokół tej wartości następuje wzrost tłumienia.

alt
Rys.21. Zmiany tłumienności jednostkowej wywołanej rozpraszaniem Rayleigha na długości fali 1μm przy zmianach domieszkowania [2].

 alt
Rys.22. Widmo tłumienności falowodu kwarcowego [5].


Na rysunku 22 przedstawiono typowy przebieg tłumienia światłowodu z funkcji długości fali. Można tam zaobserwować minima tłumienia znajdujące się wokół długości fali λ = 1,31 μm oraz λ = 1,55 μm. Przedziały te są nazywane odpowiednio drugim i trzecim oknem transmisyjnym. Istnieje również pierwsze okno transmisyjne znajdujące się wokół długości fali λ = 0,85 μm. Było one jednak wykorzystywane jedynie w początkowym okresie rozwoju techniki światłowodowej ze względu istniejące wówczas możliwości detektorów i źródeł światła.
Krzywa tłumienia pokazana na rysunku 22 dotyczy tylko światłowodów jednomodowych. W przypadku światłowodów wielomodowych wartość tłumienia jest nieco większa, ponieważ występuje w nich dodatkowe tłumienie związane z konwersją modów oraz innymi procesami. Przy wyznaczaniu całkowitego tłumienia linii światłowodowej należałoby uwzględnić także tłumienia cząstkowe poszczególnych połączeń włókien światłowodowych oraz tłumienia wprowadzane przez urządzenia pośrednie i końcowe na trasie sygnału optycznego.

2. Dyspersja

Dyspersja jest terminem posiadającym wiele znaczeń. W optyce jest to zależność współczynnika załamania światła od długości fali. Światło białe jest zbiorem skupionych w jedną wiązkę monochromatycznych promieni o barwie od czerwonej do fioletowej. Wiązka światła białego padając na pryzmat ulega rozszczepieniu, w wyniku czego promień świetlny po przejściu przez pryzmat jest rozłożony na szereg wyodrębnionych promieni [1]. Jest to związane z różnymi długościami fali dla różnych barw promieni świetlnych a tym samym z różnymi wartościami współczynnika załamania światła dla poszczególnych barw.

W światłowodzie zjawisko dyspersji powoduje rozszerzenie i „rozmycie” przesyłanego sygnału a w rezultacie jest przyczyną ograniczenia odległości transmisji, zmniejszenia jej szybkości oraz możliwego błędnego odbioru informacji. Wyróżnia się dwa główne typy dyspersji: chromatyczną i modową. Ponadto dyspersja chromatyczna dzieli się na materiałową i falowodową.

2.1.    Dyspersja chromatyczna

Dyspersja chromatyczna to rodzaj dyspersji związanej z niezerową szerokością widmową źródła światła, która obejmuje zarówno zjawiska związane z dyspersją falowodową jak i materiałową [2]. Do wyjaśnienia zjawiska dyspersji chromatycznej potrzebnych jest kilka podstawowych pojęć, takich jak: stała fazowa β (wyprowadzona wcześniej), prędkość fazowa νf oraz prędkość grupowa vg.

Na podstawie stałej fazowej można wyznaczyć prędkość fazową i grupową światła:

alt

alt

Rys.23. Rozchodzenie się światła w światłowodzie wielomodowym.

Prędkość fazowa opisuje szybkość z jaką porusza się powierzchnia stałej fazy danego modu w światłowodzie, natomiast prędkość grupowa określa szybkość z jaką porusza się obwiednia sygnału harmonicznego w światłowodzie. Inaczej mówiąc jest to prędkość, z jaką przekazywana jest energia [2].

REKLAMA

Otrzymuj wiadomości z rynku elektrotechniki i informacje o nowościach produktowych bezpośrednio na swój adres e-mail.

Zapisz się
Administratorem danych osobowych jest Media Pakiet Sp. z o.o. z siedzibą w Białymstoku, adres: 15-617 Białystok ul. Nowosielska 50, @: biuro@elektroonline.pl. W Polityce Prywatności Administrator informuje o celu, okresie i podstawach prawnych przetwarzania danych osobowych, a także o prawach jakie przysługują osobom, których przetwarzane dane osobowe dotyczą, podmiotom którym Administrator może powierzyć do przetwarzania dane osobowe, oraz o zasadach zautomatyzowanego przetwarzania danych osobowych.
Komentarze (3)
Dodaj komentarz:  
Twój pseudonim: Zaloguj
Twój komentarz:
dodaj komentarz
No avatar
Gość
Gdzie znajduje się odnośnik numer 5 z którego pochodzi rysunek 2?
No avatar
zgodnie z prawem
Jeśli wykorzystasz te informacje w pracy, zgodnie z prawem musisz podać źródło skąd zostały wzięte autora treści i skąd treść pochodzi. W tym przypadku Piotr Jankowski i adres portalu. Jeśli skorzystasz z literatury podanej na końcu wpisu (wycieczka do biblioteki) wtedy podajesz tamte książki jako źródło informacji. Nie zapominaj o tym bo często wykładowcy czepiają się za barki literatury. Przecież sami tego nie wymyślamy tylko opieramy referaty na gotowych opracowaniach.
No avatar
:D
Jak złoto - akurat mam pracę zaliczeniową - referacik z tego zakresu

REKLAMA
REKLAMA
REKLAMA
REKLAMA
Zasilacze laboratoryjne Zasilacze laboratoryjne Zapraszam wszystkich elektroników tych zaawansowanych i początkujących do grupy, gdzie poruszane będą ...
Energetyka Energetyka Zagadnienia poświęcone przemysłowi, źródłom energetycznym, rynkowi energii i polityce energetycznej.
Akty prawne, normy Akty prawne, normy Akty prawne, normy i inne zagadnienia
TRANSFORMATORY  TOROIDALNE I ZASILACZE LINIOWE TRANSFORMATORY TOROIDALNE I ... Producenci i konstruktorzy transformatorów i zasilaczy
REKLAMA
Nasze serwisy:
elektrykapradnietyka.com
przegladelektryczny.pl
rynekelektroniki.pl
automatykairobotyka.pl
budowainfo.pl